
Author: Kharim Mchatta

Author: Kharim Mchatta

Article: Exploiting CORS

Date: 3/7/2022

Author: Kharim Mchatta

I recently came across a bug bounty program that taught me how to exploit a vulnerability called

CORS. CORS also known as Cross-origin resource sharing is a browser mechanism which enables

controlled access to resources located outside of a given domain. It extends and adds flexibility to

the same-origin policy (SOP). However, it also provides potential for cross-domain attacks if a

website's CORS policy is poorly configured and implemented.

Modern web applications make use of CORS to enable access from subdomains and trusted third

parties. The vulnerabilities that occur on CORS are due to misconfigurations. An attacker can test

for this vulnerability by sending a request that contains path to the sensitive data and specifying

the header Origin as shown on the below diagram.

Author: Kharim Mchatta

I Opened burpsuite and specified that I wanted to access the API wp-json and inserted the origin

to be the domain test.com and sent the request

From the target domain I received the below response, I saw part of the response was the part

marked in red which indicated that the target website was vulnerable.

Author: Kharim Mchatta

The response we received from means that access is allowed from the requesting domain (test.com)

and that the cross-origin requests can include cookies (Access-Control-Allow-Credentials: true)

and so will be processed in-session. Because the application reflects arbitrary origins in the Access-

Control-Allow-Origin header, this means that absolutely any domain can access resources from

the vulnerable domain.

TYPES OF CORS MISCONFIGURATIONS

There are two types of components that when they are misconfigured, they can cause a significant

risk to any web application. These two components are

1. Access-Control-Allow-Origin – (ACAO) Allows for two-way interaction by third party

websites. This can be an issue for requests that modify or pull sensitive data.

2. Access-Control-Allow-Credentials – Third-party websites can carry out privileged

actions. Think of this as an attacker conducting changes that only you, the authenticated

user, should be able to.

Here are some common configurations and their related risks

TYPE Access-Control-Allow-Origin Access-Control-

Allow-Credentials

Risk

Ratings

1. Allow all origins another website.com True High

False Low

2. Allow subdomains

*.yourwebsite.com True Medium

False Low

3. Post domain and pre

domain websites

* your-website.com.evil.com

Not your-website.com

True High

False Low

4. Null Allowed null True Medium

False Low

Author: Kharim Mchatta

REASONS FOR THE RISK RATINGS

1. If true an attacker can get sensitive information by relaying authenticated requests from

victim of the target web application making the risk high

 If false, then data processing will not be possible since the browser will not process

responses from an authenticated request making the risk low.

2. If true, the exploitation of CORS will be possible if any of your subdomains are

vulnerable to Cross-Site Scripting (XSS) or Cross-Site Request Forgery (CSRF) making

the risk medium .

if false, then even if your subdomains are exploitable through XSS, attackers would not

be able to obtain authenticated data making the risk low.

3. If true, an attacker can identify a vulnerability in the way your origin header is being

validated and create similar matching domains that will by-pass your CORS making the

risk high.

If false, then data processing will not be possible since the browser will not process

responses from an authenticated request making the risk low

4. If true, an attacker can add null in the origin header which would make the request not to

be blocked. In many development languages, nonexistent headers are represented by the

value null which wouldn’t be blocked making the risk medium.

If false, then data processing will not be possible since the browser will not process

responses from an authenticated request making the risk low

Author: Kharim Mchatta

After verifying that the website was vulnerable to CORS attack the next step was to write an exploit

as shown below and saving it as a .html file. The below code can be found on my github profile

https://github.com/KharimMchatta/CORS-PoC-for-WP

Running the HTML file which we had created you ware introduced with the interface.

By clicking on the button, you should get a screen pop up with information on it as shown on the

top right image.

Author: Kharim Mchatta

Remediation

How to prevent CORS-based attacks

CORS vulnerabilities arise primarily as misconfigurations. Prevention is therefore a configuration

problem. The following sections describe some effective defenses against CORS attacks.

1. Proper configuration of cross-origin requests

If a web resource contains sensitive information, the origin should be properly specified in

the Access-Control-Allow-Origin header.

2. Only allow trusted sites

It may seem obvious, but origins specified in the Access-Control-Allow-Origin header

should only be sites that are trusted. In particular, dynamically reflecting origins from

cross-origin requests without validation is readily exploitable and should be avoided.

3. Avoid whitelisting null

Avoid using the header Access-Control-Allow-Origin: null. Cross-origin resource calls

from internal documents and sandboxed requests can specify the null origin. CORS headers

should be properly defined in respect of trusted origins for private and public servers.

4. Avoid wildcards in internal networks

Avoid using wildcards in internal networks. Trusting network configuration alone to

protect internal resources is not sufficient when internal browsers can access untrusted

external domains.

5. CORS is not a substitute for server-side security policies

CORS defines browser behaviors and is never a replacement for server-side protection of

sensitive data - an attacker can directly forge a request from any trusted origin. Therefore,

web servers should continue to apply protections over sensitive data, such as authentication

and session management, in addition to properly configured CORS.

Author: Kharim Mchatta

REFERENCE

https://www.packetlabs.net/posts/cross-origin-resource-sharing-

cors/#:~:text=A%20CORS%20misconfiguration%20can%20leave,information%20or%20saved%20payme

nt%20card

https://hackerone.com/reports/896093

https://packetstormsecurity.com/files/155011/WordPress-5.2.4-Cross-Origin-Resource-Sharing.html

https://hackerone.com/reports/426165

https://portswigger.net/web-security/cors

https://www.packetlabs.net/posts/cross-origin-resource-sharing-cors/#:~:text=A%20CORS%20misconfiguration%20can%20leave,information%20or%20saved%20payment%20card
https://www.packetlabs.net/posts/cross-origin-resource-sharing-cors/#:~:text=A%20CORS%20misconfiguration%20can%20leave,information%20or%20saved%20payment%20card
https://www.packetlabs.net/posts/cross-origin-resource-sharing-cors/#:~:text=A%20CORS%20misconfiguration%20can%20leave,information%20or%20saved%20payment%20card
https://hackerone.com/reports/896093
https://packetstormsecurity.com/files/155011/WordPress-5.2.4-Cross-Origin-Resource-Sharing.html
https://hackerone.com/reports/426165
https://portswigger.net/web-security/cors

